Monday 1 May 2017

Contact Metamorphism


Contact metamorphism is the name given to the changes that take place when magma is injected in     the surrounding solid rock (country rock). The changes that occur are greatest wherever the magma comes into contact with the rock because the temperatures are highest at this boundary and decrease with distance from it. Around the igneous rock that forms from the cooling magma is a metamorphosed zone called a contact metamorphism aureole. Aureoles may show all degrees of metamorphism from the contact area to unmetamorphosed (unchanged) country rock some distance away. The formation of important ore minerals may occur by the process of metasomatism at or near the contact zone.
Magma Intruded into Country Rock

Contact Metamorphism



Contact metamorphic rocks

Amphiboles occur in contact metamorphic aureoles around igneous intrusions. (An aureole is the zone surrounding an intrusion, which is a mass of igneous rock that solidified between other rocks located within the Earth.) The contact aureoles produced in siliceous limestones and dolomites, called skarns or calc-silicate rocks, characteristically contain metamorphic amphiboles such as tremolite or actinolite. The presence of tremolite implies a relatively low grade of metamorphism as tremolite breaks down to form the pyroxene diopside in the presence of calcite and quartz at elevated temperatures. Richterite-winchite occurs in hydrothermally metamorphosed limestones. Magnesium-rich anthophyllites are found along contact zones of granitic dikes intruding ultramafic rocks (those rich in iron and magnesium).
Contact Aureole


When a rock is contact altered by an igneous intrusion it very frequently becomes more indurated, and more coarsely crystalline. Many altered rocks of this type were formerly called hornstones, and the term hornfels is often used by geologists to signify those fine grained, compact, non-foliated products of contact metamorphism. A shale may become a dark argillaceous hornfels, full of tiny plates of brownish biotite; a marl or impure limestone may change to a grey, yellow or greenish lime-silicate-hornfels or siliceous marble, tough and splintery, with abundant augite, garnet, wollastonite and other minerals in which calcite is an important component. A diabase or andesite may become a diabase hornfels or andesite hornfels with development of new hornblende and biotite and a partial recrystallization of the original feldspar. Chert or flint may become a finely crystalline quartz rock; sandstones lose their clastic structure and are converted into a mosaic of small close-fitting grains of quartz in a metamorphic rock called quartzite.
The Purcell Sill with contact metamorphism in Glacier National Park, MT


If the rock was originally banded or foliated (as, for example, a laminated sandstone or a foliated calc-schist) this character may not be obliterated, and a banded hornfels is the product; fossils even may have their shapes preserved, though entirely recrystallized, and in many contact-altered lavas the vesicles are still visible, though their contents have usually entered into new combinations to form minerals that were not originally present. The minute structures, however, disappear, often completely, if the thermal alteration is very profound. Thus small grains of quartz in a shale are lost or blend with the surrounding particles of clay, and the fine ground-mass of lavas is entirely reconstructed.
Contact Metamorphism. The white band is a talc deposit in southern Death Valley, California. The
dark green rocks below the talc is diabase; the brown rocks above the talc is dolomite. The talc formed
by contact metamorphism of the dolomite by the intruding diabase.



No comments:

Post a Comment